ar X iv : f un ct - a n / 97 07 00 9 v 1 2 8 Ju l 1 99 7 One - parameter representations on C ∗ - algebras

نویسنده

  • J. Kustermans
چکیده

Strongly continuous one-parameter representations on a C *-algebra A and their extension to the multiplier algebra are investigated. We also give a proof of the Stone theorem on Hilbert C *-modules and look into some related problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : f un ct - a n / 97 04 00 8 v 1 2 9 A pr 1 99 7 KMS - weights on C ∗ - algebras

In this paper, we build a solid framework for the use of KMS-weights on C *-algebras. We will use another definition than the one introduced by Combes in [4], but we will prove that they are equivalent. However, the subject of KMS-weights is approached from a somewhat different angle. We introduce a construction procedure for KMS-weights, prove the most important properties of them, construct t...

متن کامل

ar X iv : f un ct - a n / 97 07 00 7 v 1 1 9 Ju l 1 99 7 CONVERGENCE OF THE SPLITTING METHOD FOR SHALLOW WATER EQUATIONS

In this paper we analyze the convergence of the splitting method for shallow water equations. In particular we give an analytical estimation of the time step which is necessary for the convergence and then we study the behaviour of the motion of the shallow water in the Venice lagoon by using the splitting method with a finite element space discretization. The numerical calculations show that t...

متن کامل

ar X iv : f un ct - a n / 97 04 00 5 v 1 2 1 A pr 1 99 7 A natural extension of a left invariant lower semi - continuous weight

In this paper, we describe a natural method to extend left invariant weights on C *-algebraic quantum groups. This method is then used to improve the invariance property of a left invariant weight. We also prove some kind of uniqueness result for left Haar weights on C *-algebraic quantum groups arising from algebraic ones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997